[1] POPPE R. A Survey on Vision-Based Human Action Recognition. Image and Vision Computing, 2010, 28(6): 976-990.
[2] 袁 立,田子茹.基于融合特征的行人再识别方法.模式识别与人工智能, 2017, 30(3): 269-278.
(YUAN L, TIAN Z R. Person Re-identification Based on Multi-feature Fusion. Pattern Recognition and Artificial Intelligence, 2017, 30(3): 269-278.)
[3] CIPPITELLI E, GASPARRINI S, GAMBI E, et al. A Human Activity Recognition System Using Skeleton Data from RGBD Sensors. Computational Intelligence and Neuroscience, 2016. DOI: 10.1155/2016/4351435.
[4] WANG H, KLSER A, SCHMID C, et al. Action Recognition by Dense Trajectories // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2011: 3169-3176.
[5] ZANFIR M, LEORDEANU M, SMINCHISESCU C. The Moving Pose: An Efficient 3D Kinematics Descriptor for Low-Latency Action Recognition and Detection // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2013: 2752-2759.
[6] RAHMANI H, MAHMOOD A,HUYNH D Q, et al. HOPC: Histogram of Oriented Principal Components of 3D Pointclouds for Action Recognition // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 742-757.
[7] SUNG J, PONCE C, SELMAN B, et al. Unstructured Human Activity Detection from RGBD Images // Proc of the IEEE International Conference on Robotics and Automation. Washington, USA: IEEE, 2012: 842-849.
[8] LI X Q, ZHANG Y, LIAO D. Mining Key Skeleton Poses with Latent SVM for Action Recognition. Applied Computational Intelligence and Soft Computing, 2017. DOI: 10.1155/2017/5861435.
[9] YANG X D, ZHANG C Y, TIAN Y L. Recognizing Actions Using Depth Motion Maps-Based Histograms of Oriented Gradients // Proc of the 20th ACM International Conference on Multimedia. New York, USA: ACM, 2012: 1057-1060.
[10] YANG X D, TIAN Y L. Super Normal Vector for Activity Recognition Using Depth Sequences // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2014: 804-811.
[11] GNEN M, ALPAYDIN E. Multiple Kernel Learning Algorithms. Journal of Machine Learning Research, 2011, 12: 2211-2268.
[12] WANG C Y, WANG Y Z, YUILLE A L. An Approach to Pose-Based Action Recognition // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2013: 915-922.
[13] ZHANG M L, ZHOU Z H. ML-KNN: A Lazy Learning Approach to Multi-label Learning. Pattern Recognition, 2007, 40(7): 2038-2048.
[14] CORTES C, VAPNIK V. Support Vector Networks. Machine Learning, 1995, 20(3): 273-297.
[15] DENG C W, HUANG G B, XU J, et al. Extreme Learning Machines: New Trends and Applications. Science China Information Sciences, 2015, 58(2): 1-16.
[16] LIN L, WANG K Z, ZUO W M, et al. A Deep Structured Model with Radius-Margin Bound for 3D Human Activity Recognition. International Journal of Computer Vision, 2016, 118(2): 256-273.
[17] 夏利民,时晓亭.基于关键帧的复杂人体动作行为识别.模式识别与人工智能, 2016, 29(2): 154-162.
(XIA L M, SHI X T. Recognition of Complex Human Behavior Based on Key Frames. Pattern Recognition and Artificial Intelligence, 2016, 29(2): 154-162.)
[18] WALLACH H M. Topic Modeling: Beyond Bag-of-Words // Proc of the 23rd International Conference on Machine Learning. New York, USA: ACM, 2006: 977-984.
[19] ESCALERA S, GONZ LEZ J, BAR X, et al. Multi-modal Ges-ture Recognition Challenge 2013: Dataset and Results // Proc of the
International Conference on Multimodal Interaction. New York, USA: ACM, 2013: 445-452.
[20] LI W Q, ZHANG Z Y, LIU Z C. Action Recognition Based on a Bag of 3D Points // Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2010: 9-14.
[21] LI L J, LI F F. What, Where and Who? Classifying Events by Scene and Object Recognition // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2007. DOI: 10.1109/ICCV.2007.4408872. |